

Angular Folder Structure

Based on best practices from the community, other github Angular projects,
developer experience from production Angular projects, and contributors,
this project goal is to create a skeleton structure which is
flexible for projects big or small.

This project defines directory structure in an Angular application
and it is a working application. The code for this project can be found at
https://github.com/mathisGarberg/angular-folder-structure

Directory Tree Sections

These are the sections this repository proposes be added to a default
Angular application structure. Each section is optional

	media

	core

	data

	layout

	modules

	shared

	styles

Please read through the Directory
Structure Parts carefully to understand them all.

Directory Tree Structure

This repository suggests two different tree structures. You are free to design
your own tree structure if these are not suitable. See the Directory
Structures section for details.

Getting Started

	Structure Overview
	Creating an Application

	Adding Structure

Directory Structure Parts

	Media Directory
	Install

	Core Module
	Install

	Data Module
	Multiple Data Sources

	Schema Naming Standard

	Install

	Layout Directory
	Routing

	Install

	Module Directory
	Install

	Shared Module
	Install

	Styles Directory
	Themes

	Bootstrap

	Install

Directory Structures

	Default Directory Structure
	About

	Tree Structure

	Install

	Neolithic Directory Structure
	About

	Tree Structure

	Install

Additional Resources

	Path Alias
	Create Aliases

	Recommended Aliases

	Using Aliases

	Furthur Reading
	Alternative Directory Structure Projects

Application Resources

	Demonstration Application

	Install Locally
	Run Locally

Contributing

We welcome contributions of all kinds to this repository. Submit a PR
or create an issue for anything you can help us improve.

For documentation contributions we recommend you install
restructuredText [https://docs.restructuredtext.net/index.html] into your
copy of vscode so you can lint and preview your work before it is submitted.

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Structure Overview

The angular-folder-structure project goal is to create a skeleton structure
which is flexible for projects big or small.

The Angular style guide has this to say on the subject of directory structure:

Have a near-term view of implementation and a long-term vision. Start small
but keep in mind where the app is heading down the road.

All of the app’s code goes in a folder named src. All feature areas are in
their own folder, with their own NgModule.

—Angular - Style Guide [https://angular.io/guide/styleguide#application-structure-and-ngmodules]

While such instructions are nice to hear they don’t give real-world skeleton
exprience. But we’ve taken this advice to heart to build our skeleton and
document all the parts in line with the official documentation.

Creating an Application

Start your project using the ng command:

ng new

You will be prompted for the project name. Create a name in lower case with
dashes between the words like album-collection-organizer

Next you will be asked to add Angular Routing. We recommend you
select Yes (which is not the default).

Next you will be asked to select the Style Sheet Format. We recommend you
select SCSS

ng will now create a default skeleton applicaiton and install your vendors.

Adding Structure

The rest of this documentaion covers new structure which is built on top of
the ng generated skeleton. Every part of angular-folder-structure is
optional so we suggest you review each part in this documentation to see if it
is appropriate for your project.

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Media Directory

~/media [https://github.com/mathisGarberg/angular-folder-structure/tree/master/media]

The media directory is used to store supporting files for the application.
Things like requirement documentation, text outlines, etc. This is the junk
drawer for the project.

Install

mkdir media

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Core Module

~/src/app/core [https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/app/core]

This module is for classes used by app.module. Resources
which are always loaded such as route guards, HTTP interceptors, and
application level services, such as the ThemeService and logging belong in this
directory.

Note

This module is recommended for a path alias
to @app

Install

ng generate module Core

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Data Module

~/src/app/data [https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/app/data]

The data module is a top level directory and holds the types (models/entities)
and services (repositories) for data consumed by the application.

By default there are two subdirectories:

~/src/app/data
 /types
 /service

The types directory holds the class definition files for data structures.
An example data structure:

export class Project {
 link: string;
 title: string;
 thumbnail: string;
}

The service directory holds the services for fetching data.
The service files are not necessarily a 1:1 match with types files.
An example service file:

import { Injectable } from '@angular/core';
import { Observable } from 'rxjs';

import { Project } from '../types/project';
import { ApiService } from './api.service';

const routes = {
 projects: '/projects',
 project: (id: number) => `/projects/${id}`
};

@Injectable({
 providedIn: 'root'
})
export class ProjectService {
 constructor(
 private apiService: ApiService) {}

 getAll(): Observable<Array<Project>> {
 return this.apiService.get(routes.projects);
 }

 getSingle(id: number): Observable<Project> {
 return this.apiService.get(routes.project(id));
 }
}

Multiple Data Sources

If your application consumes data from more than one source then the data
directory should be restructured to contain subdirectories for each data
source. Do not create multiple modules for each data source:

~/src/app/data
 /data-source-one
 /types
 /service
 /data-source-two
 /types
 /service
 /data.module.ts

Schema Naming Standard

A type file is very much like an entity file in an Object Relational Mapper.
This type file is central to your application’s consumption of data and
therefore does not need cursory decorators such as calling it ProjectSchema
or ProjectModel. Schemas are special because they are the only plain-named
class in the application.

Install

ng generate module Data

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Layout Directory

~/src/app/layout [https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/app/layout]

and/or

~/modules/custom/layout

The layout directory contains one or more components which act as a layout or
are parts of a layout such as a Header, Nav, Footer, etc. and
have a:

<router-outlet></router-outlet>

in the html for other components to embed within. By convention the
app.component.html in the app module acts as the top level layout for
the entire application. From this top level you may embed other layouts which
in turn embed other components.

There are two schools of thought on layouts. The first is to put all your
layouts for all your modules into the app module’s layout directory.
This consolidates all layouts in a single location.

The second school of thought is to put a layout directory into each custom
module which has its own layout[s]. This approach groups the layout
for components of the module into the module in which the components reside.
This may apply to the app module if you wish to create a layout[s] which
most appropriatly fits there.

Components like Nav and Footer are handled the Angular way by importing
them into a component template:

<app-nav></app-nav>

Routing

Each module can have its own routing and is often defined in a file separate
from the custom.module.ts file. See the app module’s
app-routing.module.ts as an example.

Within routing layouts are handled in a rather clever way. By using child
routes a top level route can define a layout to be used for all child routes.
Defined in the app module’s app-routing.module.ts file child routes
are grouped in a single Route (as defined in @angular/router).

It is important to note that when layouts are imported from other modules
(for this example the CustomModule) that does not cause the top-level
app module to load the CustomModule from the server into the user’s
browser at the time only app level routes are displayed. This is important
for performance! The CustomModule compiled .js file will only load
when a route internal to the module is requested. That is, from the below
configuration, only when a route beginning with /custom is requested.

use { CustomLayoutComponent } from './modules/custom/layout/custom-layout.component';

{
 path: 'custom',
 component: CustomLayoutComponent,
 loadChildren: () =>
 import('./modules/custom/custom.module').then(m => m.CustomModule)
}

When a route is called at /custom the CustomLayoutComponent is used
as a layout and handling of the routing is handed off to the CustomModule.
The CustomLayoutComponent has a <router-outlet></router-outlet>:

<div [class]="theme">
 <div class="mat-app-background">
 <app-nav></app-nav>

 <div class="container">
 <router-outlet></router-outlet>
 </div>

 <app-footer (changeTheme)="onThemeChange($event)"></app-footer>
 </div>
</div>

This <router-outlet></router-outlet> is used to display a route and
component defined in the routing of the CustomRoutingModule:

So the routes are /custom and /custom/projects/:id and they use
the CustomLayoutComponent for their layout.

Install

mkdir src/app/layout
ng generate component layout/AppCustomLayout
ng generate component layout/Header
ng generate component layout/Footer

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Module Directory

~/src/app/modules [https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/app/modules]

The modules directory contains a collection of modules which are each
independent of each other. This allows Angular to load only the module it
requires to display the request thereby saving bandwidth and speeding the
entire application.

In order to accomplish this each module must have its own routing which is a
loadChildren route resource defined in the AppRoutingModule. This is
also covered in the layout documentation

A route can have children and each child can have a loadChildren property.
From app-routing.module.ts:

{
 path: '',
 component: ContentLayoutComponent,
 canActivate: [NoAuthGuard], // Should be replaced with actual auth guard
 children: [
 {
 path: 'dashboard',
 loadChildren: () =>
 import('./modules/home/home.module').then(m => m.HomeModule)
 },
 {
 path: 'about',
 loadChildren: () =>
 import('./modules/about/about.module').then(m => m.AboutModule)
 },
 {
 path: 'contact',
 loadChildren: () =>
 import('./modules/contact/contact.module').then(m => m.ContactModule)
 }
]
},

Each child must have its own base path from which it can load children from a
module in the modules directory. Here is the routing for the About page:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';

import { AboutComponent } from './pages/about/about.component';

const routes: Routes = [
 {
 path: '',
 component: AboutComponent
 }
];

@NgModule({
 imports: [RouterModule.forChild(routes)],
 exports: [RouterModule]
})
export class AboutRoutingModule { }

It is necessary to add the child routes to the RouterModule
through forChild.

Besides routing any module inside the modules directory can be as simple or
complicated as you wish.

Install

mkdir src/app/modules

For each new module run ng generate module modules/NewModule

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Shared Module

~/src/app/shared [https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/app/shared]

The shared module contains classes and resources which are used in more
than one dynamically loaded module. By always loading with the
application the shared components are ready whenever a module requests them.

The shared module is a good place to import and export the FormsModule
and the ReactiveFormsModule. It is also good for the FontAwesomeModule
and any other resource used by some modules some of the time but not all
modules all of the time.

Note

This module is recommended for a path alias
to @shared

Install

ng generate module Shared

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Styles Directory

~/src/styles [https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/styles]

The ~/src/styles directory is used to store scss style sheets for the
application. It can contain themes, Bootstrap, Angular Material, and any
other styles.

~/src/styles.scss [https://github.com/mathisGarberg/angular-folder-structure/tree/master/src/styles.scss]
is installed in the default Angular skeleton. It should
contain @import statements for all your global application scss files.
For instance it can import theme files stored in the ~/src/styles
directory.

Themes

The ~/src/styles/themes directory should contain the application-wide
themes. This application includes two theme-files, black-theme.scss and
light-theme.scss.

A theme file generates the color-palette that composes the final theme and is
constructed of three main palettes: primary, accent and warn. These palettes
are defined using the mat-palette mixin, which accepts a mat-color and a
hue-number that represents different shades of the chosen color. In terms of
code, this is what we have:

$my-black-primary: mat-palette($mat-grey, 700, 300, 900);
$my-black-accent: mat-palette($mat-blue-grey, 400);
$my-black-warn: mat-palette($mat-red, 500);

$my-black-theme: mat-dark-theme(
 $my-black-primary,
 $my-black-accent,
 $my-black-warn
);

The themes are included in the styles.scss file along with the mat-core
mixin, which adds the base styles to material components.

@import '~@angular/material/theming';

@import './styles/themes/black-theme.scss';
@import './styles/themes/light-theme.scss';

@include mat-core();

.my-light-theme {
 @include angular-material-theme($my-light-theme);
}

.my-dark-theme {
 @include angular-material-theme($my-dark-theme);
}

The downside here is that the approach above only will style material
components and not custom ones.

To achieve this, we’ve added a file called
project-container.component.scss-theme.scss. This file imports the material
theme and defines a mixin that styles the content with the appropriate color
values - pulling color-palettes from the theme.

@import '~@angular/material/theming';

@mixin my-project-container-component-theme($theme) {
 $accent: map-get($theme, accent);

 .active {
 color: mat-color($accent, default-contrast);
 background-color: mat-color($accent);

 &:hover {
 color: mat-color($accent, default-contrast);
 background-color: mat-color($accent);
 }
 }
}

Then those files are referred to in the styles.scss files:

@import 'app/modules/home/page/project-item/project-container.component.scss-theme.scss';

@mixin custom-components-theme($theme) {
 // ...
 @include my-project-container-component-theme($theme);
}

.my-light-theme {
 // ...
 @include custom-components-theme($my-light-theme);
}

.my-dark-theme {
 // ...
 @include custom-components-theme($my-black-theme);
}

The application content needs to be placed inside either a
mat-sidenav-container element or have the mat-app-background class
applied to work. This application follows the last approach by appending this
class to the div that wraps the app-content in the
src/app/layout/content-layout/content-layout.component.html file:

<div class="my-dark-theme">
 <div class="mat-app-background">
 <app-nav></app-nav>

 <div class="container">
 <router-outlet></router-outlet>
 </div>

 <app-footer></app-footer>
 </div>
</div>

The height of the viewport the theme should affects is also defined:

.mat-app-background {
 height: 100%;
}

Bootstrap

The ~/src/styles directory can be used for compiling bootstrap and storing
other scss resources. To install a custom bootstrap download the source files,
extract bootstrap into ~/src/styles/bootstrap, then modify the
bootstrap/scss/_variables.scss. Include boostrap in the styles.scss:

@import './styles/bootstrap/scss/bootstrap.scss';

Install

mkdir src/styles

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Default Directory Structure

This is the directory structure this repository recommends. It is listed here
in one place as a reference.

About

Inspired by the original blog post, this structure uses all the directory
structure parts and is a strait-forward installation.

Tree Structure

.
├── e2e
│ └── src
├── media
└── src
 ├── app
 │ ├── core (@app)
 │ ├── data
 │ ├── layout
 │ ├── modules
 │ └── shared (@shared)
 ├── assets
 ├── environments (@env) [@env links to environment file]
 └── styles
 └── themes

Install

These instructions are to install this directory structure to a brand new
ng version 9 or below created application:

mkdir media
ng generate module Core
ng generate module Shared
ng generate module Data
mkdir src/app/layout
mkdir src/app/modules
mkdir src/styles && mkdir src/styles/themes
json --version || sudo npm install -g json
json -f tsconfig.json -I -c "this.baseUrl = './'"
json -f tsconfig.json -I -c "this.compilerOptions.paths = {}"
json -f tsconfig.json -I \
 -e "this.compilerOptions.paths['@app/*'] = ['src/app/core/*']" \
 -e "this.compilerOptions.paths['@shared/*'] = ['src/app/shared/*']" \
 -e "this.compilerOptions.paths['@env'] = ['src/environments/environment']"

These instructions are to install this directory structure to a brand new
ng version 10 or above created application. Before you can execute
these instructions you must remove the comments from the tsconfig.base.json
file because comments in a json file are not valid json:

mkdir media
ng generate module Core
ng generate module Shared
ng generate module Data
mkdir src/app/layout
mkdir src/app/modules
mkdir src/styles && mkdir src/styles/themes
json --version || sudo npm install -g json
json -f tsconfig.base.json -I -c "this.baseUrl = './'"
json -f tsconfig.base.json -I -c "this.compilerOptions.paths = {}"
json -f tsconfig.base.json -I \
 -e "this.compilerOptions.paths['@app/*'] = ['src/app/core/*']" \
 -e "this.compilerOptions.paths['@shared/*'] = ['src/app/shared/*']" \
 -e "this.compilerOptions.paths['@env'] = ['src/environments/environment']"

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Neolithic Directory Structure

– Tom H Anderson <tom.h.anderson@gmail.com>

This is an alternative to the primary directory structure this repository
promotes.

About

This directory structure corrects ng creation of all files inside the
app directory. The default ng structure forces all code to exist as a
subdirectory to app without giving a clear space for files which should
exist beneath the app dir.

This directory structure moves ~/src/app to ~/src/module/app then
creates a symlink from ~/src to ~/src/app (not shown and hidden from
vscode) so ng will still place new files where they belong. By moving
app to a subdirectory of the module directory it clears space for
files which truly belong under the app module. This removes the
requirement of a core module.

All modules exist in the same directory. This removes the special handling
for the app module and flattens the modules making them all equally
important.

Tree Structure

.
├── e2e
│ └── src
├── media
└── src
 ├── assets
 ├── environments (@env) [@env links to environment file]
 ├── module (@module)
 │ ├── app (@app)
 │ ├── [custom module 1]
 │ │ └── layout
 │ ├── [custom module 2]
 │ │ └── layout
 │ ├── [more custom modules...]
 │ ├── data (@data)
 │ └── shared (@shared)
 └── styles
 └── themes

Install

These instructions are to install this directory structure to a brand new
ng version 9 or below created application:

mkdir media
mkdir src/module
mkdir src/styles && mkdir src/styles/themes
mv src/app src/module
cd src && ln -s . app & cd .
sed -i .bak 's/.\/app/.\/module\/app/g' src/main.ts
ng generate module module/Shared
ng generate module module/Data
json --version || sudo npm install -g json
json -f tsconfig.json -I -c "this.baseUrl = './'"
json -f tsconfig.json -I -c "this.compilerOptions.paths = {}"
json -f tsconfig.json -I \
 -e "this.compilerOptions.paths['@app/*'] = ['src/module/app/*']" \
 -e "this.compilerOptions.paths['@shared/*'] = ['src/module/shared/*']" \
 -e "this.compilerOptions.paths['@module/*'] = ['src/module/*']" \
 -e "this.compilerOptions.paths['@env'] = ['src/environments/environment']" \
 -e "this.compilerOptions.paths['@data/*'] = ['src/module/data/*']"
mkdir -p .vscode
test -f .vscode/settings.json || echo "{}" > .vscode/settings.json
json -f .vscode/settings.json -I -e "this['files.exclude'] = {'**src/app': true}"

These instructions are to install this directory structure to a brand new
ng version 10 or above created application. Before you can execute
these instructions you must remove the comments from the tsconfig.base.json
file because comments in a json file are not valid json:

mkdir media
mkdir src/module
mkdir src/styles && mkdir src/styles/themes
mv src/app src/module
mkdir src/module/app/layout
cd src && ln -s . app & cd .
sed -i .bak 's/.\/app/.\/module\/app/g' src/main.ts
ng generate module module/Shared
ng generate module module/Data
json --version || sudo npm install -g json
json -f tsconfig.base.json -I -c "this.baseUrl = './'"
json -f tsconfig.base.json -I -c "this.compilerOptions.paths = {}"
json -f tsconfig.base.json -I \
 -e "this.compilerOptions.paths['@app/*'] = ['src/module/app/*']" \
 -e "this.compilerOptions.paths['@shared/*'] = ['src/module/shared/*']" \
 -e "this.compilerOptions.paths['@module/*'] = ['src/module/*']" \
 -e "this.compilerOptions.paths['@env'] = ['src/environments/environment']" \
 -e "this.compilerOptions.paths['@data/*'] = ['src/module/data/*']"
mkdir -p .vscode
test -f .vscode/settings.json || echo "{}" > .vscode/settings.json
json -f .vscode/settings.json -I -e "this['files.exclude'] = {'**src/app': true}"

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Path Alias

Path aliases simplify paths by giving a link to the path rather than
using the the fully qualified path name. Using them will make your code
easier to read and maintain.

Path aliases are relative to compilerOptions.baseUrl. By default this is
set to "./" so all path aliases we create must be fully qualified from the
baseUrl.

Create Aliases

This documentation uses a json program to modify the tsconfig.json file to
simplify editing for everyone.

Run this command to install the json program:

npm install -g json

To create an alias run this command from your root application directory:

json -f tsconfig.json -I -e "this.compilerOptions.paths['@app/*'] = ['src/app/core/*']"

The @app is the alias. The path, src/app/core/* in this example, is the
path from the root compilerOptions.baseUrl directory to the directory you
would like to alias.

For json to be able to add paths to your tsconfig.json “paths” has to exist
under compilerOptions. Else you get an error when running the commands to add
specific paths. “paths” can be added like this:

json -f tsconfig.json -I -e “this.compilerOptions[‘paths’] = {}”

Recommended Aliases

Recommended are aliases to core, shared,
modules and environment. These aliases will
simplify your development:

json -f tsconfig.json -I -e "this.compilerOptions.paths['@app/*'] = ['src/app/core/*']"
json -f tsconfig.json -I -e "this.compilerOptions.paths['@shared/*'] = ['src/app/shared/*']"
json -f tsconfig.json -I -e "this.compilerOptions.paths['@modules/*'] = ['src/app/modules/*']"
json -f tsconfig.json -I -e "this.compilerOptions.paths['@env'] = ['src/environments/environment']"

Note the alias for @env goes directly to the environment file.

Using Aliases

When you have aliases defined such as @shared you can shortcut your use
statements by using the alias:

import { SharedModule } from '../../shared/shared.module';

becomes:

import { SharedModule } from '@shared/shared.module';

The environment @env alias to a file is used this way:

import { environment } from '@env';

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Furthur Reading

	Read the original blog post which started this module: How to define a highly
scalable folder structure for your Angular project [https://itnext.io/choosing-a-highly-scalable-folder-structure-in-angular-d987de65ec7]

	Path Aliasing [https://christianlydemann.com/simpler-typescript-paths-with-path-aliases/]
is a popular way to make your import statements more tidy and is used in
this demonstration application.

	Some Best Practices [https://medium.com/@tomastrajan/6-best-practices-pro-tips-for-angular-cli-better-developer-experience-7b328bc9db81]
which follow the advice here closely.

Alternative Directory Structure Projects

These projects have similar goals to this project and understanding them will
give a wider view of directory structure: the problem and solutions.

	
	angular-starter [https://github.com/PatrickJS/angular-starter]

	This is a very popular starter kit with lots of tools built in. It is
designed to be used when starting a new application. Common directory
parts include ~/src/styles.

	
	$ngx ROCKET [https://github.com/ngx-rocket/generator-ngx-rocket]

	Extensible Angular 8+ enterprise-grade project generator based on
angular-cli with best practices from the community. Includes PWA,
Cordova & Electron support, coding guides and more!

	
	angular-ngrx-material-starter [https://github.com/tomastrajan/angular-ngrx-material-starter]

	Angular, NgRx, Angular CLI & Angular Material Starter Project

	
	Angular-Full-Stack [https://github.com/DavideViolante/Angular-Full-Stack]

	Angular Full Stack project built using Angular 2+, Express, Mongoose and
Node. Whole stack in TypeScript.

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Demonstration Application

See this application running on our
demonstation application [https://mathisgarberg.github.io/angular-folder-structure/]

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Install Locally

You can install this application locally and run it. Assuming you already have
typescript, npm, and ng installed, clone this repository, cd to the
directory and run npm install:

git clone https://github.com/mathisGarberg/angular-folder-structure.git
cd angular-folder-structure
npm install

Included with this package are some custom npm scripts. Here is a list of
npm run commands and their descriptions:

npm start -> Run dev. server on http://localhost:4200/
npm run build -> Lint code and build app for production in dist folder
npm run test -> Run unit tests via Karma in watch mode
npm test:ci -> Lint code and run unit tests once for continuous integration
npm run e2e -> Run e2e tests using Protractor
npm run lint -> Lint code

Run Locally

To run the application type ng serve then browse to
http://localhost:4200/

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

Index

This is documentation for
angular-folder-structure [https://github.com/mathisGarberg/angular-folder-structure].
If you find this useful please add your ★ star to the project.

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Angular Folder Structure

 		
 Structure Overview

 		
 Creating an Application

 		
 Adding Structure

 		
 Media Directory

 		
 Install

 		
 Core Module

 		
 Install

 		
 Data Module

 		
 Multiple Data Sources

 		
 Schema Naming Standard

 		
 Install

 		
 Layout Directory

 		
 Routing

 		
 Install

 		
 Module Directory

 		
 Install

 		
 Shared Module

 		
 Install

 		
 Styles Directory

 		
 Themes

 		
 Bootstrap

 		
 Install

 		
 Default Directory Structure

 		
 About

 		
 Tree Structure

 		
 Install

 		
 Neolithic Directory Structure

 		
 About

 		
 Tree Structure

 		
 Install

 		
 Path Alias

 		
 Create Aliases

 		
 Recommended Aliases

 		
 Using Aliases

 		
 Furthur Reading

 		
 Alternative Directory Structure Projects

 		
 Demonstration Application

 		
 Install Locally

 		
 Run Locally

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

